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A B S T R A C T

Decades of research have shown that skill learning often unfolds exponentially — people improve rapidly early 
on, and then performance gradually levels off. Given how important expectations of learning are for actual 
learning, we explored whether people accurately intuit this canonical time course of skill learning. Across six 
preregistered experiments (n = 500), we find that people correctly predict that skill learning curves (error re
ductions over time) on a novel visuomotor task will follow an exponential decay function, both for an imagined 
naïve player and for themselves, before engaging with the task. Moreover, people are sensitive to conditions that 
merit exponential learning within a bounded time frame and only predict these curves when an imagined player 
puts in effort and the task is not too difficult. However, people systematically misestimate specific parameters of 
skill learning (e.g., initial and average performance, and rate of improvement), which relates to reduced affect at 
the beginning of learning. Critically, these negative effects can be ameliorated by practice: Providing people with 
minimal practice reduces their prediction errors and, in turn, buffers them from negative feelings at the 
beginning of learning.

1. Introduction

Learning curves have been a cornerstone of the psychological lexicon 
for centuries: Educators, coaches, employers, and psychophysicists often 
talk about “steep” or “plateauing” learning curves to describe the 
experience of improving at a task. Functionally, learning curves repre
sent performance over time and capture the rate at which a new skill is 
acquired. Although there is well-established research on how people 
track their progress over time during learning (e.g., people choose to re- 
study items they got wrong when preparing for a test, see Kornell & 
Metcalfe, 2006; Payne, Youngcourt, & Beaubien, 2007; Ten, Kaushik, 
Oudeyer, & Gottlieb, 2021; Simon & Bjork, 2001), less is known about 
whether or how people represent learning curves prior to learning.

Understanding how people think about learning curves before 
learning is important as these expectations might shape which tasks 
individuals choose to pursue and whether they decide to persist versus 
quit in the face of challenges. Consider the desire of many people to take 
up an instrument, like violin or piano, during the grueling early days of 
the 2020 COVID-19 quarantine. Given the choice among many in
struments, people may have gravitated toward an instrument that they 
thought would be easy to pick up, rather than one that they thought 

would take years to grasp. This is in line with prior work showing that 
people typically spend their time on tasks where they experience steep 
learning curves (Ten et al., 2021). Furthermore, if someone expects swift 
progress learning the piano, but it turns out to be slow, then they may 
develop negative feelings and prematurely quit (Rutledge, Skandali, 
Dayan, & Dolan, 2014; Dai, Dietvorst, Tuckfield, Milkman, & Schweit
zer, 2018). To our knowledge it is unclear whether people accurately 
intuit how their future learning will progress across time prior to the 
experience of learning.

Decades of research have documented that learning curves on motor 
and cognitive tasks usually proceed according to a decelerating expo
nential function (Thorndike, 1913; Newell & Rosenbloom, 2013; 
Heathcote, Brown, & Mewhort, 2000; Moskowitz, Gale, Gallivan, Wol
pert, & Flanagan, 2020): Novices will experience substantial initial 
improvement over a short period of time, but the amount of improve
ment per unit of time decreases as performance asymptotes (Heathcote 
et al., 2000; Krakauer, Hadjiosif, Xu, Wong, & Haith, 2019). Although 
different individuals can approach these asymptotes at different rates, 
the general shape of learning across individuals is relatively stereotyped. 
Given that learning usually unfolds following this canonical pattern, it 
seems plausible that people may have mental representations of learning 
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that also follow this exponential decay function.
Prior work in the “Judgments of Learning (JOL)” literature has 

shown that people can monitor and evaluate their own performance at 
specific time points during learning and strategically allocate more time 
studying items that are not “too hard” nor “too easy” before a test 
(Rhodes, 2016; Bjork, Dunlosky, & Kornell, 2013; Finn & Metcalfe, 
2008; Koriat & Bjork, 2006; Arbuckle & Cuddy, 1969; Koriat, 1997). 
However, relatively few studies have asked individuals to predict their 
future performance across multiple trials prior to learning. Studies that 
have taken this approach find a “stability bias”: People predict that their 
memory for word pairs will remain the same across four rounds of 
studying and testing (Koriat, Bjork, Sheffer, & Bar, 2004; Kornell & 
Bjork, 2009; Kornell, Rhodes, Castel, & Tauber, 2011; though follow-up 
studies suggested that this result may be an artifact of framing, Ariel, 
Hines, & Hertzog, 2014). This line of research has also primarily focused 
on memory tasks and only probed predictions of learning concerning the 
very beginning of the task, where there is usually rapid improvement. 
Thus, it is unknown whether people predict that their rate of improve
ment will eventually decline with practice, especially on novel skill 
tasks. Importantly, this question is best suited for tasks where ceiling (or 
near-ceiling) performance takes a long time and, to avoid framing ef
fects, where few linguistic cues are employed.

Our central hypothesis is that people intuitively think of skill 
learning as rapid improvement followed by a slow decline in progress 
(consistent with the canonical exponential decay learning curves). 
However, there are two reasons to believe that people may struggle with 
accurately predicting the shape of learning curves. First, prior work 
shows that people have an exponential growth bias, where they tend to 
“linearize” observations and underestimate exponential growth over 
time. This bias has been identified in a wide variety of domains from 
predicting duckweed growth rates in a pond (Wagenaar & Sagaria, 
1975; Wagenaar & Timmers, 1978) to estimating personal savings and 
investments in financial decision-making (McKenzie & Liersch, 2011). 
Thus, people might similarly predict a more linear function for learning 
curves.

Second, people tend to be especially overly optimistic about their 
future self (Koriat et al, 2004; Koriat, Lichtenstein, & Fischhoff, 1980; 
Koriat & Bjork, 2005; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde 
and Palminteri, 2017; Garrett and Sharot, 2017; Horn & Loewenstein, 
2024). Indeed, prior work shows that people systematically over-predict 
their starting performance and under-predict their rate of growth on the 
first few trials of a memory task (Ariel et al., 2014). It is only with 
practice that people dampen and better calibrate their expectations 
(Finn & Metcalfe, 2007; Finn & Metcalfe, 2008; Koriat, Sheffer, & 
Ma’ayan, 2002). Thus, it is possible that people’s over-optimism about 
their performance may lead them to predict better overall performance 
and, in turn, more linear improvement.

If people can construct a mental model of future learning trajectories 
akin to exponential decay learning curves, how might they do this? Do 
they use a simple heuristic that exponential learning curves underlie all 
learning? Or instead, do people base their predictions of learning curves 
on features of the learner and the specific task. Prior work suggests that a 
learner’s performance on a task is influenced by both task features and 
the learner’s own attributes (Anderson, Lohse, Lopes, & Williams, 2021; 
Duckworth, Eichstaedt, & Ungar, 2015; Guadagnoli & Lee, 2004; 
Pashler, McDaniel, Rohrer, & Bjork, 2008). Unsurprisingly, learners 
start off with worse performance and make less progress over time on 
harder compared to easier tasks (Ahissar & Hochstein, 1997; Odic, Hock, 
& Halberda, 2014), and learners who put in less effort will not learn as 
much as someone who puts in more effort (Frömer, Stürmer, & Sommer, 
2016; Lee, Swinnen, & Serrien, 1994). Thus, if people are making 
judgments about learning curves based on task and learner features, 
given a bounded time frame, they may only predict exponential learning 
curves when the task is not too hard and the player puts in effort. In cases 
where the player does not try hard and/or the task is very difficult, 
people may instead predict worse average performance and minimal 

gains as the player is presumably far from reaching a performance 
asymptote in a bounded time frame. Since prior work has shown that 
people are sensitive to both task difficulty and effort when making 
learning curve judgments and when evaluating someone’s knowledge 
state or performance (Berke, Tenenbaum, Sterling, & Jara-Ettinger, 
2023; Heller, Arnold, Klein, & Tanenhaus, 2015; Hodges & Lohse, 
2020; Muradoglu & Cimpian, 2020; Song & Schwarz, 2008), it seems 
plausible that they might also rely on inferences about task difficulty and 
player effort when estimating future learning curves.

In sum, we drew inspiration from the aforementioned work on 
learning curves, metacognition, and affective science to ask how humans 
construct and represent the time course of future skill learning. To do 
this, we needed to create a task that is (1) novel to participants, (2) has 
an exponential learning curve where people donot hit ceiling perfor
mance within the allotted time of the experiment, (3) has minimal lin
guistic demands to avoid framing effects (see Ariel et al., 2014), and (4) 
can capture intuitive predictions of trial-by-trial performance.

To fulfill these criteria, we created a novel visuomotor skill learning 
task called “Lolli-toss”, where the goal is to gain points by launching 
lollipops toward the center of a target. This computer-based task re
quires participants to learn the function of two keys — one that can stop 
a lollipop from sliding sideways on the bottom of the screen with a click 
and one that can toss the lollipop toward a target based on the length of 
the press. Although the goal of Lolli-toss is similar to other games, such 
as throwing darts, the functionalities of playing are unique to this game 
and thus novel to all players. Furthermore, reaching optimal perfor
mance on Lolli-toss takes time, more than the 50 trials allotted.

Lolli-toss was also specifically designed to capture precise trial-by- 
trial predictions of future learning curves: Instead of having people 
choose from different learning trajectories or draw out the shape of the 
learning curve as a graph (which is notoriously hard for people; Cic
cione, Sablé-Meyer, & Dehaene, 2022; Melnik-Leroy et al., 2023), we 
had participants simply report where on the target they thought the 
lollipop would land after different amounts of experience. This captures 
predictions of performance over time (also known as a learning curve; 
distinct from learning outcomes; Heathcote et al., 2000; Solum, Lorås, & 
Pedersen, 2020; Horn & Loewenstein, 2024). The benefit of measuring 
predictions of learning curves in the motor domain, rather than the 
cognitive domain, is that motor tasks often allow for more overt, direct 
predictions (e.g., instead of asking “how many novel-word pairs will you 
remember on this trial”, participants can simply click where they think 
their lollipop will land). Participants’ predictions, as well as where the 
lollipops actually landed during subsequent learning, allowed us to 
measure both predicted and actual learning curves using the same 
metric (namely, Euclidean distance from the target’s center).

In Experiments 1a, 1b, and 1c, we first establish that the learning 
curve on our novel visuomotor task generally follows an exponential 
decay function, and then examine whether people accurately predict 
that a naïve player’s learning curve on this task would show rapid 
improvement followed by smaller gains (consistent with an exponential 
decay function), using two distinct prediction methods. In Experiment 2, 
we test whether people’s predictions of learning curves are informed by 
perceived task difficulty and player effort. Finally, in Experiments 3a 
and 3b, we explore individuals’ metacognitive awareness of their own 
learning curves, and how (in)accurate expectations about learning 
curves have consequences for motivation and affect during actual 
learning. Material, analysis code, and data from all six experiments can 
be accessed on the OSF repository: https://osf.io/xzm5c/, and all scripts 
and regression tables are reported in the Supplemental Information (SI). 
Taken together, these experiments aim to uncover how humans build 
and represent the progression of skill learning before embarking on 
acquiring a new skill.

2. Experiment 1a

We first asked people to play our novel visuomotor learning task, 
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Lolli-toss, to establish that learning follows the canonical motor learning 
exponential decay function. This experiment was preregistered: 
https://osf.io/cw7g2.

2.1. Methods

2.1.1. Participants
We recruited 50 adult U.S. participants (Mage = 28.52, SDage = 9.93; 

74 % female, 26 % male) online through Prolific. The self-reported racial 
and ethnic makeup of participants was White (50 %), Hispanic or Latino 
(18 %), Asian (16 %), Black or African American (10 %), and multiracial 
or biracial (6 %). Forty-eight percent of participants reported having a 
bachelor’s degree or higher. Based on preregistered exclusion criteria, 
five additional participants were excluded for not having a negatively 
signed learning rate (extracted using a linear model error = rate * trial +
constant; we consider this a relaxed criteria, since participants were not 
excluded based on the magnitude or the statistical significance of the 
learning rate parameter), which we took as a sign of participant inat
tention or lack of effort on the task. Note that our main results replicate 
when we include these five excluded participants (see SI).

2.1.2. Stimuli
We designed a novel online visuomotor game called Lolli-toss. The 

goal of Lolli-toss is to get as many points as possible by “tossing” lolli
pops that move back and forth along the bottom of the screen toward the 
bullseye of a target board above (Fig. 1a). The lollipops always appeared 
first on a randomized side (left or right) of the window before moving 
horizontally across the bottom of the screen. Players used two keys to 

play the game: The “space” bar stopped the lollipop, and the “enter” key 
launched the lollipop forward toward the target. The amount of time a 
player held down the “enter” key corresponded to the vertical distance 
that the lollipop traversed (e.g., the longer they held down the “enter” 
key, the farther the lollipop went). We set the optimal interval to 
1406.67 ms, with hold intervals less than 940.33 ms or more than 1873 
ms fully missing the target. If a player got the lollipop in the bullseye of 
the target, they received 50 points. For each concentric ring outside of 
the bullseye (starting from red, ending at white), they could get 30, 20, 
10, and 5 points respectively, and 0 points for landing the lollipop 
outside of the target. A version of Lolli-toss can be accessed on the OSF 
repository.

2.1.3. Procedure
The task consisted of a training phase and a Play phase. In the 

training phase, participants were introduced to the goal, features (e.g., 
moving lollipop), and scoring system of the novel Lolli-toss game. Par
ticipants were then told how the “space” bar and the “enter” key 
controlled the lollipops and were able to press the keys to confirm that 
these keys were functional on their keyboard without the target board or 
lollipop present (to prevent explicit learning on the board). Participants 
had to pass two comprehension questions before proceeding further. In 
the Play phase, participants played 10 rounds of Lolli-toss, with 5 tosses 
per round (to reduce fatigue), for a total of 50 tosses (trials). After each 
toss, participants saw their toss score and their total score. In between 
each round, participants were shown their score from the previous 
round, their cumulative score, and a reminder of how many rounds they 
had completed.

Fig. 1. Schematics of Experiments 1a, 1b, 1c, 2, 3a and 3b. (a) In Experiment 1a, participants played an online game, Lolli-toss, for 50 tosses. The goal of Lolli-toss is 
to launch a lollipop that moves from side to side into the yellow center of the target by first stopping its path with the “space” key and then tossing it forward with the 
“enter” key. The distance that the lollipop moves upward is proportional to the duration that the “enter” key is held down. (b) In Experiment 1b, participants made 
predictions for three consecutive trials by clicking on the screen where they predicted a beginner player’s lollipops would land every seven trials. They also predicted 
where a participant’s last toss would land on the 50th trial. (c) In Experiment 1c, participants judged the likelihood of a beginner player’s lollipop landing in each of 
the four areas using sliders for the same trials as Experiment 1b. (d) In Experiment 2, participants predicted performances for four conditions (2 difficulty × 2 effort 
levels) using the same method as Experiment 1b. (e) In Experiment 3a, participants first predicted their own performance in Lolli-toss for 50 trials, and then played 
the game for 50 trials and rated their motivation and feelings in between each round (after every 5 trials). Experiment 3b provided participants with three chances to 
practice Lolli-toss before making predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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Additional post-task questions on subjective task difficulty, prior 
gaming experience, and demographic information were collected at the 
end of the game (see SI for measures and associated analyses).

2.2. Results

2.2.1. Preregistered analyses
To quantify participants’ actual and predicted trial-by-trial perfor

mance, we calculated the Euclidean distance from the center of the 
lollipop head to the center of the target (i.e., their error for a given toss) 
and fit each participant’s actual or predicted learning curve with two 
models: an exponential decay function (Error = a exp (− b*Trial) + c), 
and a linear function (Error = − b*Trial + c). We chose the exponential 
decay function because (1) it clearly describes our hypothesis that 
people intuit that performance quickly improves early on and then 
slowly asymptotes, (2) is a canonical function used in prior motor 
learning literature to describe learning curves (Heathcote et al., 2000), 
and (3) would imply, as we predict, that the rate at which performance 
improves is proportional to the current level of performance. Based on 
work showing that people tend to linearize exponential functions 
(Hutzler et al., 2021; McKenzie & Liersch, 2011; Wagenaar & Sagaria, 
1975), we chose the linear function as our null hypothesis comparison 
point: If our hypothesis is correct, people’s predicted and actual learning 
curves should better fit the exponential compared to the linear function.

As expected, learning curves on Lolli-toss were better characterized 
by an exponential decay function than a linear function. Because the 
exponential model contained an additional free parameter relative to 
the linear model, we evaluated model performance for all participants 
using the Akaike information criterion (AIC), which penalizes for the 
number of free parameters in a given model, and where a lower AIC 
score indicates better fit (Akaike, 1974). A paired Wilcoxon signed-rank 

test revealed that the exponential model (Mean = 555.62, Median =
551.18, SD = 37.92) outperformed the linear model (Mean = 566.02, 
Median = 562.92, SD = 37.34) and had significantly lower AIC scores 
across the group (V = 53, p < .001; Fig. 2a). Additional exploratory 
analyses and discussion using logarithmic and power decay functions to 
fit participant data can be found in the SI.

2.3. Interim discussion

In line with prior work on sensorimotor skill learning (Heathcote 
et al., 2000), Experiment 1a established that learning curves on our 
novel skill task, Lolli-toss, was best fit by an exponential decay model 
rather than a linear function.

3. Experiments 1b - 1c

We next explored whether people can accurately predict the expo
nential shape of learning curves in Lolli-toss. In Experiment 1b, we asked 
people to simulate a naïve learner’s trial-by-trial performance and make 
direct predictions about the location of a learner’s toss on the game 
screen. To test the robustness of our findings, in Experiment 1c, we 
queried predictions using an additional paradigm commonly used in the 
JOL literature: asking participants to estimate the likelihood of a toss 
landing in specific predefined areas on the game screen (see examples in 
Koriat et al., 2004; Kornell & Bjork, 2009; Rhodes, 2016). Both experi
ments were preregistered (Experiment 1b: https://osf.io/4dhf2; 1c: 
https://osf.io/q6ytr).

Fig. 2. Average actual and predicted learning trajectories in Experiments 1a, 1b, 1c and 2. (a) Actual learning trajectory in Experiment 1a. (b) Predicted learning 
trajectory for a naïve player in Experiment 1b via trial-by-trial direct clicks of where lollipops will land. (c) Predicted learning trajectory for a naïve player in 
Experiment 1c via trial-by-trial probability estimates. (d) Predicted learning trajectories for four conditions in Experiment 2 that varied player effort (high vs. low) 
and task difficulty (high vs. low). Dark blue indicates high difficulty and light blue indicates low difficulty; solid lines indicate high effort while dotted lines indicate 
low effort. Note that error bars indicate 95 % bootstrapped confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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3.1. Methods

3.1.1. Participants
In Experiment 1b, we recruited 50 adult U.S. participants (Mage =

32.24, SDage = 8.89; 52 % female, 44 % male, 2 % non-binary, 2 % 
preferred not to answer) online through Prolific. The self-reported racial 
and ethnic background of the sample was White (74 %), Asian (14 %), 
Black or African American (6 %), and multiracial or biracial (6 %). The 
majority of participants (74 %) reported having a bachelor’s degree or 
above. Four additional participants were excluded for not predicting 
improvement (i.e., a negatively signed learning rate) across trials based 
on the preregistered criteria. This criterion was intended to exclude 
participants who may be responding less attentively or randomly. 
However, note that our main results replicated when including these 
participants excluded for not predicting improvement in Experiments 1b 
and 1c (see SI for details). In Experiment 1c, we recruited an identical 
sample size of 50 adult U.S. participants (Mage = 27.54, SDage = 7.58; 76 
% female, 22 % male, and 2 % non-binary) on the same online platform. 
The self-reported racial and ethnic background of the sample was White 
(76 %), Asian (8 %), Hispanic or Latino (8 %), Black or African American 
(6 %), and multiracial or biracial (2 %). Half of the participants reported 
to have a bachelor’s degree or higher. An additional 13 participants 
were excluded for not predicting any improvement across trials based on 
the same preregistered criteria as Experiment 1a.

3.1.2. Stimuli
We developed a prediction version of Lolli-toss with the same fea

tures in Experiments 1b and 1c (Fig. 1b and c) as the play version of 
Lolli-toss in Experiment 1a.

3.1.3. Procedure
The task in Experiments 1b and 1c consisted of a training phase and a 

Predict phase. In the training phase, participants were introduced to 
Lolli-toss as in Experiment 1a. However, instead of being asked to play 
Lolli-toss, participants were instructed that they would predict a 
beginner player’s progress in the game. They were told that this player 
had never seen Lolli-toss before and would be playing Lolli-toss for 50 
trials. Participants were given one opportunity to experience how the 
“space” and “enter” keys work to move the lollipop without the presence 
of the target board to avoid direct learning. To proceed further, partic
ipants had to pass three comprehension questions about the goal of the 
task in both experiments, and two additional comprehension questions 
about likelihood estimations in Experiment 1c (see SI for details of 
comprehension questions).

In the Predict phase, participants were asked to make trial-by-trial 
predictions of the lollipop landing locations. To reduce task redun
dancy and fatigue, participants predicted a total of 19 out of 50 trials 
across seven rounds. Participants made predictions on the first three 
consecutive trials per round for the first six rounds. This resulted in 7- 
trial intervals between rounds (e.g., they predicted trials 1, 2, 3 in 
round 1 and trials 10, 11, 12 in round 2, etc.). To ensure a matched 
ending trial between the prediction responses and the learning responses 
from Experiment 1a, participants also predicted the landing location of 
the last toss (i.e., the 50th trial) in the seventh round. In Experiment 1b, 
participants were instructed to make predictions by clicking directly on 
the game screen (“You have 3 clicks in this round. Place on the screen 
where you think someone’s 1st, 2nd, and 3rd tosses would be.”). Partic
ipants’ previous clicks were visible to them during a given round with a 
green dot to reduce memory demands (see Fig. 1b) and were removed 
when a new round started. In Experiment 1c, participants were asked to 
estimate the likelihood of the toss landing on each of four possible re
gions (e.g., “If you have to make your best guess, how likely will this 
player’s 1st throw land in any of the following areas?”; see Fig. 1c). 
Participants responded with four sliders (0 % - 100 %), one for each 
region. This approach allowed us to track changes in the relative like
lihood distribution for tosses landing in each of the four regions across 

trials. Participants were only able to proceed to the next trial if the sum 
of all four sliders was 100 %.

After completion of the prediction phase, participants were asked the 
same set of post-study questions as in Experiment 1a (see SI).

3.2. Results

3.2.1. Preregistered analyses
As hypothesized, participants predicted that learning curves on Lolli- 

toss would follow an exponential decay function in Experiments 1b and 
1c. Experiment 1b used the same analysis approach as in Experiment 1a, 
where participants’ predicted trial-by-trial performance was quantified 
using the Euclidean distance and fit to both exponential (Error = a exp. 
(− b*Trial) + c) and linear function (Error = − b*Trial + c) models. A 
paired Wilcoxon signed-rank test revealed that the exponential models 
(Mean = 179.01, Median = 180.97, SD = 21.18) outperformed the linear 
models (Mean = 188.79, Median = 187.21, SD = 18.06) with signifi
cantly lower AIC scores (V = 174, p < .001 for all participants; Fig. 2b). 
Experiment 1c used participants’ weighted trial-by-trial predictions — 
converting the reported probabilities to Euclidean distance in the task 
space and computing weighted distances for participants using the 
likelihood estimation on each trial — and found that the exponential 
models (Mean = 130.23, Median = 130.73, SD = 20.61) outperformed 
the linear models (Mean = 146.26, Median = 146.52, SD = 20.27), and 
had significantly lower AIC scores (V = 106, p < .001 for all participants; 
Fig. 2c; see SI for details on probability-to-distance conversion).

3.2.2. Exploratory analyses
It is possible that the exponential shape of participants’ predicted 

learning curves was artificially derived by people predicting two linear 
processes: Initial linear improvement followed by a linear flat perfor
mance curve at some plateau. To rule out this possibility, we also fit 
participants’ predicted learning trajectories in Experiment 1b using 
segmented regression models: Participants’ predicted trajectories were 
fit by two linear models with a breaking point. If participants predicted 
rapid improvement early on followed by slower progress later during 
learning (an exponential decay curve), we would expect to see partici
pants predicting performance gains in both segments. Alternatively, if 
participants predicted initial improvement followed by constant per
formance, we would expect participants to predict flat learning rates (i. 
e., not significantly different than 0) for the second segment. We found 
evidence for the former: Participants predicted that a beginner player 
would improve quickly in the first segment (Meanslope 1 = − 28.21, 
Medianslope 1 = − 11.52, SDslope 1 = 38.51) compared to the second 
segment (Mslope 2 = − 0.48, Medianslope 2 = − 0.64, SDslope 2 = 4.62; paired 
Wilcoxon signed-rank test V = 105, p < .001) and participants still 
predicted improvement during the second segment rather than constant 
performance (one-sample Wilcoxon signed-rank test V = 232, p < .001). 
See SI for additional model comparisons and discussion using logarith
mic and power decay functions to fit participants’ predicted learning 
curves.

To examine if participants were accurate at predicting the specific 
parameters of a beginner player’s learning trajectory, we next compared 
participants’ predictions in Experiment 1b to the actual performance 
data in Experiment 1a. We found that participants were more optimistic 
about a beginner player’s performance compared to people’s actual 
performance in the task. Participants in Experiment 1b predicted that 
beginner players would make smaller errors across trials (average of 
performance across all trials; Meanpredict = 58.29, Medianpredict = 55.15, 
SDpredict = 26.27; Meanlearn = 94.05, Medianlearn = 91.68, SDlearn = 27.18; 
Wilcoxon rank-sum test W = 381, pFDR-corrected < .001), have better 
performance at the start (calculated by averaging performance across 
trials 1–3; Meanpredict = 114.85, Medianpredict = 106.41, SDpredict = 52.59; 
Meanlearn = 222.09, Medianlearn = 201.79, SDlearn = 108.25; W = 388, 
pFDR-corrected < .001), and have better final performance (calculated by 
averaging performance across the last three matched trials, trials 47, 48, 
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and 50; Meanpredict = 27.20, Medianpredict = 19.16, SDpredict = 20.68; 
Meanlearn = 82.35, Medianlearn = 75.59, SDlearn = 31.63; W = 149, pFDR- 

corrected < .001) than they actually do. Participants also predicted players 
to have less variability in the size of their errors compared to players’ 
actual error variability in the task (Meanpredict = 41.93, Medianpredict =

36.50, SDpredict = 18.60; Meanlearn = 74.57, Medianlearn = 66.01, SDlearn =

29.67; W = 376, pFDR-corrected < .001). Lastly, participants predicted that 
players would improve at the task at a slower rate than they actually did 
(Meanpredict = − 0.28, Medianpredict = − 0.12, SDpredict = 0.34; Meanlearn =

− 0.42, Medianlearn = − 0.36, SDlearn = 0.32; W = 1704, pFDR-corrected =

.002).

3.3. Interim discussion

We found converging evidence across methods that people accu
rately predict the exponential decay shape of learning on a novel 
visuomotor task prior to any direct task experience. When asked to 
reason about a naïve player’s learning curve by making either point 
estimates (Experiment 1b) or likelihood estimates (Experiment 1c) of 
performance, people’s predictions were better fit by an exponential 
decay model than a linear model. However, a comparison between Ex
periments 1a and 1b revealed that people also misestimate the specific 
parameters of learning curves, leading to overly optimistic predictions of 
a naïve player’s overall performance, but an underestimation of their 
learning rate. In Experiment 2, we turn our attention to examining 
whether information about task difficulty and player effort impacts 
people’s predictions about future learning curves.

4. Experiment 2

In Experiment 2, we explore whether people always predict expo
nential skill learning curves given a bounded time frame, or instead, 
construct and adjust their predictions in response to both task and player 
features. Specifically, we probed people’s learning curve predictions 
using a within-subjects 2 × 2 design, manipulating both task difficulty 
and player effort (see Fig. 1d). We varied perceived task difficulty by 
controlling whether a visual occluder appears in the center of the lolli
pop’s path, blocking the desired lollipop toss location, or to the left of 
the screen. We manipulated player effort by explicitly telling partici
pants to predict performance for one player who puts in a lot of effort 
during the game and one who does not.

We predict that participants will modify their predicted learning 
curves in response to both features (Experiment 2 is preregistered: 
https://osf.io/nj8kh). Specifically, we hypothesize that participants will 
predict better performance (average, starting, and ending), as well as a 
steeper learning curve, when the player puts in more effort and the task 
is not difficult. In the case where the player puts in little effort and the 
task is difficult, we hypothesize that participants might predict flatter 
learning curves in the same period of 50 trials. Thus, it is possible that 
only when the player puts in high effort and the task is not difficult do 
participants predict learning curves that follow an exponential decay 
function.

4.1. Methods

4.1.1. Participants
We recruited 100 adult U.S. participants (Mage = 35.29; SDage =

11.22; 51 % female, 45 % male, 3 % non-binary, and 1 % other) through 
Prolific. The self-reported racial and ethnic background of the sample 
was White (80 %), Asian (8 %), Black or African American (5 %), other 
(5 %), Native Hawaiian or other Pacific Islander (1 %), and prefer not to 
answer (1 %). Half of the sample held a bachelor’s degree or higher. An 
additional 29 participants were excluded from further analyses based on 
preregistered exclusion criteria (24 participants were excluded due to 
incorrectly answering the perceived difficulty question; 5 participants 
were excluded due to incorrectly answering one or more comprehension 

check questions about player effort; see script in SI for exact wording). 
Because we did not expect that participants would predict negative 
learning rates in all conditions (e.g., when a low effort player is playing a 
high difficulty game), we did not preregister any exclusion criterion based 
on the direction of the slope (i.e., predicted learning rates) as prior 
experiments.

4.1.2. Stimuli
To manipulate task difficulty, we designed two variations of the 

original Lolli-toss game by adding a visual occluder (80 pixels × 392 
pixels) to the moving lollipop’s horizontal path at different positions 
(Fig. 1d). In the high difficulty version, the occluder blocked the center of 
the horizontal lollipop path, thereby blocking visual access to the main 
lollipop release location. In the low difficulty version, the occluder 
blocked the left side of the path, leaving the optimal lollipop release 
location in sight. Participants were not explicitly told the difficulty level 
for each version and instead had to infer it from visual features, as is 
often the case in the real world (indeed adults and children accurately 
judge task difficulty from static features of a task, Gweon, Asaba, & 
Bennett-Pierre, 2017; Yildirim et al., 2019). To manipulate player effort, 
participants learned about a novice player who will either put in a lot of 
effort and try very hard (high effort condition), or not put in a lot of effort 
nor try very hard (low effort condition) during the entire game.

4.1.3. Procedure
As in previous experiments, this task consisted of a training phase 

and a Predict phase. In the training phase, participants were introduced 
to the game of Lolli-toss and a naïve player who will play the game for 50 
trials. Additionally, participants were presented with information about 
the two versions of the task and two types of players who put in more or 
less effort before proceeding to complete the same comprehension 
questions as in Experiments 1b and 1c.

In the Predict phase, participants were assigned to all four conditions 
in a randomized order (a within-person 2 × 2 design crossing difficulty 
and effort). For each condition, participants were shown the task version 
and player effort information before proceeding to make predictions 
about a player’s performance. Participants completed 19 predictions on 
the same trials as Experiments 1b and 1c. After making predictions, 
participants were asked a forced-choice attention check question about 
the effort level of the player they just predicted. As preregistered, if 
participants did not correctly answer all four effort questions, they were 
excluded from further analyses.

Upon completion of all predictions, participants answered a series of 
post-task questions (see SI for details and additional analyses). Since task 
difficulty was never explicitly introduced to participants during the 
experiment, they were asked two comprehension questions about diffi
culty, one for each Lolli-toss version. We preregistered including par
ticipants who correctly rated the center occluder version as more 
difficult than the side occluder version. If participants answered that 
both were of equal difficulty or that the low difficulty version was more 
difficult than the high difficulty version, they were excluded.

4.2. Results

4.2.1. Preregistered analyses
Participants’ predictions of learning trajectories on Lolli-toss were 

impacted by both player effort and task difficulty (Fig. 2d). As in prior 
experiments, we calculated the Euclidean distance across participants’ 
19 predictions in each condition to create measures of trial-by-trial 
performance and learning curves (performance over trials). Three 
linear mixed-effects models with fixed effects of effort and difficulty and 
random intercepts by participant revealed that participants predicted 
that greater effort and lower task difficulty would lead to better average 
performance (e.g., smaller errors; player effort: b = − 58.39, p < .001; 
task difficulty: b = − 18.27, p < .001), better starting performance 
(player effort: b = − 50.34, p < .001; task difficulty: b = − 17.85, p <
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.001), and better ending performance (player effort: b = − 66.29, p <

.001; task difficulty: b = − 17.74, p < .001). Interaction models between 
player effort and task difficulty were all not significant (see SI for full 
regression tables).

Notably, only learning curves from the high effort, low difficulty 
condition were better fit by an exponential model (Mean = 173.17, 
Median = 174.79, SD = 21.42) than a linear model (Mean = 178.32, 
Median = 178.63, SD = 19.89; V = 1698, p = .03 for 95 converged 
participants; p > .4 for the other three conditions; see SI for details and 
additional replication analyses using data from the first condition only). 
For the participants whose exponential models converged across con
ditions (n = 67), we ran linear mixed-effects models predicting learning 
rates (extracted from the exponential models) with fixed effects of task 
difficulty and player effort and random intercepts by participants. Re
sults showed significant effects of difficulty (b = − 0.09, p = .02) and 
effort (b = 0.08, p < .05) on predicted learning rates. Participants judged 
that learning an easier task would result in a faster learning rate 
compared to learning a more difficult task. Moreover, participants 
judged that a player who puts in more effort would have a slower 
learning rate. Further analyses with an additional interaction term 
revealed a significant interaction between effort and difficulty (b =
− 0.19, p = .02). Interrogating this interaction revealed that learning 
rates did not differ by task difficulty when a player did not try (low 
difficulty: Mean = − 0.29, Median = − 0.08, SD = 0.38; high difficulty: 
Mean = − 0.29, Median = − 0.11, SD = 0.37; V = 944, pFDR-corrected = .8). 
However, when a player put in high effort, learning rates were steeper 
on the easier task (Mean = − 0.30, Median = − 0.07, SD = 0.38) 
compared to the harder task (Mean = − 0.12, Median = − 0.04, SD =
0.21, V = 1652, pFDR-corrected = .003; see SI for all pairwise comparisons). 
We considered these results suggestive due to a smaller sample of 
converged participants.

4.3. Interim discussion

Experiment 2 revealed that people only expect skill learning to un
fold exponentially when an imagined player puts in effort and the task is 
not very difficult in a bounded time frame. People also expect that 
performance will be on average better when a player puts in more effort 
and the task is not very difficult. These predictions are in line with prior 
work showing that effort increases learning outcomes and task difficulty 
decreases learning outcomes (Metcalfe & Kornell, 2005; Pashler et al., 
2008). Thus, people may use prior beliefs about task difficulty and 
player effort in conjunction with explicit information about these fea
tures to intuitively construct expected learning curves. In Experiment 
3a, we shift our focus to examining how individuals predict their own 
future learning curves.

5. Experiment 3a

Prior experiments all focused on third party predictions of learning 
curves. An open question is whether people similarly predict that their 
own learning curve will follow an exponential decay function, as well as 
whether they have good metacognitive awareness of features of their 
unique expected learning curve on a novel task. Going beyond past work 
that has looked at people’s moment-to-moment metacognitive judg
ments of learning for only a few discrete time points after some expe
rience (Kornell & Metcalfe, 2006; Kornell & Bjork, 2009), in Experiment 
3a we asked whether people can predict the shape and features of their 
future learning curves over time with minimal task exposure. Specif
ically, we asked participants to first make predictions about their own 
performance on Lolli-toss over 50 trials and then play the game for 50 
trials.

Importantly, perceptions of one’s own learning trajectory may affect 
what tasks people choose to learn, as well as whether they persist in 
learning. Indeed, prior work has shown that expecting swift success and 
then facing early setbacks causes premature quitting (Dai et al., 2018). 

One possibility is that a large prediction error between expected per
formance and actual performance causes people to feel unhappy 
(Rutledge et al., 2014) and perhaps give up. However, it is also possible 
that poor performance alone, rather than the discrepancy between 
predicted and actual performance, leads to negative affect or lower 
motivation. As people’s memory of their predicted learning curves may 
fade or be hard to track during actual learning, it is possible that actual 
performance may be more salient than predicted performance for 
motivational and affective processes as learning progresses. Thus, in 
Experiments 3a, we test these different possibilities by measuring peo
ple’s affective and motivational responses to their performance on Lolli- 
toss after they predicted their own performance on the same game. 
Experiment 3a is preregistered: https://osf.io/fxas2.

5.1. Methods

5.1.1. Participants
We recruited 125 adult U.S. participants (Mage = 37.04; SDage =

12.46; 51.2 % female, 44.8 % male, and 4 % non-binary) through Pro
lific. The self-reported racial and ethnic background of the sample was 
White (77.6 %), Black or African American (9.6 %), Asian (6.4 %), other 
(4.8 %), and American Indian or Alaska Native (1.6 %). About half of the 
sample (48.8 %) held a bachelor’s degree or higher. An additional 46 
participants were excluded from further analyses based on preregistered 
exclusion criteria (3 participants did not answer the training compre
hension check questions correctly after three tries, 3 participants failed 
the writing comprehension check, and, using the same preregistered 
criteria as Experiments 1a-1c, 40 participants did not predict or show 
improvement; however, see SI for details showing that main results 
replicate when including these 40 participants).

5.1.2. Stimuli
To collect participants’ predictions of their own performance and 

their actual performance, we combined the stimuli used in Experiments 
1a and 1b.

5.1.3. Procedure
This study consisted of a training phase, a Predict phase, and a Play 

phase (Fig. 1e). In the training phase, participants were told that they 
would predict their own performance on a novel game called Lolli-toss. 
They were then introduced to how the game works as in Experiment 1a 
and asked to answer three comprehension check questions about the 
goal of the task. If a participant failed to respond to the check questions 
correctly after three tries, they were directed to exit the experiment and 
received partial compensation.

The Predict phase was identical to Experiment 1b except for the 
following changes. Unlike Experiment 1b, participants made predictions 
for all 50 trials to gain more precise estimates for analyses comparing 
predicted and actual learning curves. Participants predicted their 
lollipop landing locations in 10 rounds, with five predictions per round.

The procedure for the Play phase was identical to Experiment 1a 
with two additional exploratory questions about participants’ motiva
tional and affective states in between each round. Before the first round, 
participants were asked to rate their initial motivation level and their 
affective state on two sliders. Then, after playing each round, partici
pants were asked to rate their momentary motivation level and affective 
state. After completing the 50 tosses, participants were asked a set of 
post-task questions (including two open-ended comprehension ques
tions; see SI for details and additional analyses).

5.2. Results

5.2.1. Preregistered analyses
As in prior experiments, participants’ predicted and actual learning 

curves on Lolli-toss were best fit by an exponential decay function 
(Fig. 3a). Following the same analyses as in Experiment 1b, Wilcoxon 
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signed-rank tests revealed that participants’ predicted learning curves 
were better described by the exponential model (Mean = 474.09, Me
dian = 476.23, SD = 46.20) than the linear model (Mean = 482.08, 
Median = 479.41, SD = 41.94; V = 2440, p < .001 for all but one 
participant whose exponential model did not converge). Following the 
same analyses as in Experiment 1a, Wilcoxon signed-rank tests also 
revealed that participants’ actual learning curves were better fit by 
exponential models (Mean = 547.10, Median = 549.22, SD = 38.97) 
versus linear models (Mean = 555.45, Median = 559.82, SD = 40.99; V 
= 1295, p < .001 for all participants; see SI for additional exploratory 
analyses and discussion on fitting participant data using logarithmic and 
power decay functions).

Paired Wilcoxon signed-rank tests revealed that participants were on 
average overly optimistic about their future learning trajectories, pre
dicting that they would make smaller errors (average of performance 
across 50 trials; Meanpredict = 58.72, Medianpredict = 54.34, SDpredict =

28.07; Meanlearn = 91.54, Medianlearn = 87.52, SDlearn = 25.36; V = 468, 
pFDR-corrected < .001), have better starting performance (calculated by 
averaging performance across trials 1–5; Meanpredict = 93.10, Median
predict = 87.98, SDpredict = 42.69; Meanlearn = 160.95, Medianlearn =

143.76, SDlearn = 75.33; V = 620, pFDR-corrected < .001), better final per
formance (calculated by averaging performance.

across trials 45–50; Meanpredict = 44.12, Medianpredict = 40.57, SDpre

dict = 28.00; Meanlearn = 77.74, Medianlearn = 71.18, SDlearn = 28.92; V =
629, pFDR-corrected < .001), and less variability (standard deviation) in 
performance (Meanpredict = 33.66, Medianpredict = 30.92, SDpredict =

12.08; Meanlearn = 65.78, Medianlearn = 63.32, SDlearn = 26.49; V = 177, 
pFDR-corrected < .001) than warranted given their actual performance. On 
average, participants also thought that they would improve at a slower 
rate than they actually did (Meanpredict = − 0.20, Medianpredict = − 0.07, 
SDpredict = 0.27; Meanlearn = − 0.35, Medianlearn = − 0.22, SDlearn = 0.33; 
V = 5457, pFDR-corrected < .001; Fig. 3c).

Participants did not appear to have precise metacognitive pre
dictions of their own specific learning curves: There was a marginally 
significant correlation between people’s predicted average performance 

and actual average performance (rho = 0.19, pFDR-corrected = .058). There 
was also a similar trend for starting performance (rho = 0.20, pFDR-cor

rected = .058) and final performance (rho = 0.19, pFDR-corrected = .058). 
However, participants did not accurately predict the variance in their 
performance (rho = 0.05, pFDR-corrected = .6) or their learning rates (rho =
0.11, pFDR-corrected = .3).

5.2.2. Exploratory analyses
We tested whether people’s affect and motivation changed in 

response to their prediction errors (i.e., the difference between expected 
and actual performance for each round) and actual performance during 
the game. Two separate linear mixed-effects models with a fixed effect of 
round and random intercepts by participants revealed that participants’ 
motivation linearly decreased across rounds of playing Lolli-toss (b =
− 1.28, p < .001), but their affect linearly increased across rounds (b =
0.70, p < .001; see regression tables in SI; Fig. 4a). Due to the high 
collinearity between participants’ prediction errors and actual perfor
mance (rho = − 0.60, p < .001), we ran separate linear mixed-effects 
models with each variable as a fixed effect predicting motivation and 
affect (while controlling for the fixed effect of round and random in
tercepts by participants; see SI). When we compared model performance 
using AIC values, we found that actual performance predicted changes 
in motivation (performance: b = − 0.03, pFDR-corrected < .001, AIC =
10,047; prediction errors: b = 0.02, pFDR-corrected = .01, AIC = 10055) and 
affect (performance: b = − 0.17, pFDR-corrected < .001, AIC = 10486; pre
diction errors: b = 0.12, pFDR-corrected < .001, AIC = 10574) better than 
prediction errors across each round. In other words, and unsurprisingly, 
participants were more motivated and felt better the closer they were to 
the bullseye. Participants were also more motivated and felt better when 
they made smaller prediction errors, but these models did not explain as 
much variance as the performance-only model (see AICs above).

As shown in Fig. 4a, we identified qualitatively a sharp decrease in 
affective judgments between participants’ baseline affect judgment to 
their judgment after completing the first round. Affect rating changes 
between round 1 and baseline differed significantly from 0 (Mean =

Fig. 3. Experiments 3a and 3b predicted and actual learning trajectories. (a) First-person predicted (in light blue) and actual (in red) learning trajectories in 
Experiment 3a. (b) First-person predicted (in navy) and actual (in red) learning trajectories in Experiment 3b, where participants were allowed to practice Lolli-toss 
prior to making any predictions. (c) Prediction errors (the difference between predicted and actual performance) in Experiment 3a (in light blue) and Experiment 3b 
(in navy) for average, starting, and final performance, variance, and learning rates. All error bars indicate 95 % bootstrapped confidence intervals. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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− 16.04, Median = − 14, SD = 27.36, one-sample Wilcoxon V = 1449.5, 
p < .001). This time point also corresponded to one of the largest pre
diction errors that people made — they thought they would perform 
significantly better than they actually did at the beginning of the task 
prior to playing. We theorized that this sudden dip in affective state 
might be related to the stark difference between what people predict 
they will do at the beginning of the game and how they actually do. A 
linear regression predicting changes in affect between the beginning and 
the end of round 1 using prediction error revealed that the more par
ticipants overestimated their performance, the worse they felt about 
their actual performance (b = 0.07, pFDR-corrected < .05, AIC = 804.26; 
Fig. 4b). In contrast, no significant effect was found when predicting 
changes in affect between the beginning and end of round 1 using actual 
performance in round 1 (b = − 0.05, pFDR-corrected = .10, AIC = 806.67; see 
regression tables in SI; Fig. 4c), and this model showed a higher AIC 
score (worse model performance) compared to the model using only 
prediction error. That is, performance prediction errors, and not per
formance alone, appeared to be related to participants’ large negative 
change in affect at the beginning of the game.

Additional exploratory analyses examining the location patterns and 
learning curves by each component of Lolli-toss — “stopping” on the X- 
axis and “tossing” on the Y-axis — can be found in SI.

5.3. Interim discussion

Results from Experiment 3a show that people accurately predict the 
canonical exponential decay shape of their own future skill learning 
curves on Lolli-toss, but not necessarily the specific features of this 
process. People are overly optimistic about their performance but un
derestimate their rate of learning, resulting in miscalibrated predictions 
of their own learning curves. These inaccuracies may have affective 

consequences during learning: The larger the prediction error between 
predicted and actual performance at the beginning of learning, the more 
negative people felt about their performance. Inspired by the “under- 
confidence with practice” effect (Koriat et al., 2002; Finn & Metcalfe, 
2007; Finn & Metcalfe, 2008), in Experiment 3b, we explored whether 
limited practice would lower people’s prediction errors and in turn 
reduce the sharp decline in their affect ratings at the beginning of 
learning.

6. Experiment 3b

In Experiment 3a we found that people tend to overestimate how 
well they would perform at the beginning of Lolli-toss. This over
estimation is associated with feeling worse at the beginning of learning 
when their expectations do not match their performance. Here we 
examined whether a brief practice prior to making any predictions 
would provide people with better metacognitive access to their own 
performance and, in turn, more accurate predictions of initial perfor
mance and better feelings at the beginning of learning. Experiment 3b is 
preregistered: https://osf.io/gtmhe.

6.1. Methods

6.1.1. Participants
We recruited 125 adult U.S. participants (Mage = 35.20; SDage =

11.10; 60.8 % female, 38.4 % male, and 0.8 % non-binary) through 
Prolific. The self-reported racial and ethnic background of the sample 
was White (62.4 %), Black or African American (24 %), Asian (7.2 %), 
other (4 %), Native Hawaiian or other Pacific Islander (1.6 %), and 
preferred not to answer (0.8 %). Over half of the sample (54.4 %) held a 
bachelor’s degree or higher. An additional 86 participants were 

Fig. 4. Momentary motivation and affect ratings during Lolli-toss in Experiments 3a (no practice) and 3b (with practice). (a) Participants’ motivation and affect 
judgments prior to and after each round of playing Lolli-toss. For the motivation panel, average motivation ratings for Experiment 3a are in yellow, and ratings for 
Experiment 3b are in brown. For the affect panel, average affect ratings for Experiment 3a are in light green, and ratings for Experiment 3b are in dark green. The 
gray bar highlights the decrease in affect ratings between baseline (round 0) and round 1 in Experiment 3a. The error bars are bootstrapped 95 % confidence in
tervals. (b) Correlation between prediction errors and the affect difference during round 1. (c) Correlation between actual performance and the affect difference 
during round 1. Affect difference ratings are calculated by taking the difference between ratings after round 1 and from the baseline. The gray bars in (b) and (c) 
indicate standard error for the regression line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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excluded from further analyses based on preregistered exclusion criteria 
(7 participants did not answer the training comprehension check ques
tions correctly after three tries, 12 participants failed the writing 
comprehension check, and 67 participants did not predict or show 
improvement; See SI for analyses showing that including these 67 par
ticipants did not change main results).

6.1.2. Stimuli
We used the same paradigm as Experiment 3a (Fig. 1e).

6.1.3. Procedure
The procedure is identical to that of Experiment 3a except for the 

following change: In the training phase, after being introduced to the 
“stopping” and “tossing” components, participants were given three 
practice trials to stop the moving lollipop and toss it toward the target 
(see SI for other minor changes and additional analyses).

6.2. Results

6.2.1. Preregistered analyses
Replicating results from Experiment 3a, participants both predicted 

their learning trajectories to be exponential and their actual learning 
curves followed an exponential decay shape (predict AIC values: 
Meanexp = 492.12, Medianexp = 496.78, SDexp = 51.93, Meanlinear =

497.85, Medianlinear = 500.17, SDlinear = 49.54, paired Wilcoxon V =
2858, p = .008 for all participants; practice and learn AIC values: 
Meanexp = 586.41, Medianexp = 586.67, SDexp = 41.31, Meanlinear =

594.25, Medianlinear = 597.36, SDlinear, = 41.22, paired Wilcoxon V =
1184, p < .001 for all but one participant whose exponential model fit 
did not converge; Fig. 3b).

We next examined if participants over- or under-estimated specific 
features of their learning trajectories over 50 trials after practice using 
paired Wilcoxon sign-rank tests. Consistent with results from Experi
ment 3a (without practice), participants in Experiment 3b overestimated 
how well they would perform on average (Meanpredict = 66.26, Median
predict = 61.14, SDpredict = 28.63; Meanlearn = 87.28, Medianlearn = 86.58, 
SDlearn = 21.60; V = 1293, pFDR-corrected < .001), at the start (Meanpredict 
= 98.55, Medianpredict = 88.93, SDpredict = 44.32; Meanlearn = 121.85, 
Medianlearn = 109.42, SDlearn = 45.55; V = 2067, pFDR-corrected < .001), 
and at the end of the game (Meanpredict = 51.37, Medianpredict = 46.62, 
SDpredict = 29.58; Meanlearn = 74.89, Medianlearn = 70.58, SDlearn = 25.35; 
V = 1430, pFDR-corrected < .001). They also underestimated the variance 
in their performance across 50 trials (Meanpredict = 39.58, Medianpredict =

35.46, SDpredict = 17.53; Meanlearn = 60.45, Medianlearn = 58.38, SDlearn =

21.98; V = 769, pFDR-corrected < .001) and their learning rates, predicting 
that they would improve slower than they did (Meanpredict = − 0.17, 
Medianpredict = − 0.08, SDpredict = 0.23; Meanlearn = − 0.28, Medianlearn =

− 0.13, SDlearn = 0.32; V = 4773, pFDR-corrected = .02; learning rates 
extracted excluding the practice trials such that the predicted and actual 
learning trials matched at 50 trials each; Fig. 3c).

Different from results in Experiment 3a, participants’ predicted 
average performance, starting performance, and variance tracked their 
actual performance (average performance: rho = 0.24, pFDR-corrected =

.02; starting performance: rho = 0.20, pFDR-corrected = .04; variance: rho =
0.25, pFDR-corrected = .02), showing some enhanced metacognitive 
awareness of performance with practice. However, as in Experiment 3a, 
no significant correlation was found between participants’ predicted 
and actual final performance (rho = 0.09, pFDR-corrected = .4) or learning 
rates (rho = − 0.05, pFDR-corrected = .6).

To explore whether the presence of three practice trials prior to 
making predictions improved prediction accuracy, we compared pre
diction errors in the average, starting, and final performance, as well as 
variance and learning rates in Experiments 3a and 3b. Using Wilcoxon 
rank-sum tests, we observed a reduction of prediction errors in average 
performance (Meanexp 3a = − 32.82, Medianexp 3a = − 29.97, SDexp 3a =

33.34; Meanexp 3b = − 21.02, Medianexp 3b = − 22.98, SDexp 3b = 31.86; W 

= 6125, pFDR-corrected = .02), starting performance (Meanexp 3a = − 67.85, 
Medianexp 3a = − 57.29, SDexp 3a = 79.58; Meanexp 3b = − 23.30, Medianexp 

3b = − 19.19, SDexp 3b = 57.20; W = 4762, pFDR-corrected < .001), and 
variance (Meanexp 3a = − 32.12, Medianexp 3a = − 25.30, SDexp 3a = 29.10; 
Meanexp 3b = − 20.86, Medianexp 3b = − 17.01, SDexp 3b = 24.81; W =
5843, pFDR-corrected = .009) with the addition of practice. We also found a 
trend for smaller prediction errors in final performance (Meanexp 3a =

− 33.61, Medianexp 3a = − 31.75, SDexp 3a = 35.39; Meanexp 3b = − 23.52, 
Medianexp 3b = − 25.46, SDexp 3b = 37.11; W = 6371, pFDR-corrected = .052), 
but no reduction in learning rates (Meanexp 3a = 0.15, Medianexp 3a =

0.12, SDexp 3a = 0.41; Meanexp 3b = 0.11, Medianexp 3b = 0.01, SDexp 3b =

0.41; W = 8428, pFDR-corrected = .2) with the addition of practice.
Allowing participants to practice prior to making predictions also 

effectively eliminated the sharp decline in their affect ratings from 
baseline to the first round identified in Experiment 3a (Fig. 4a). Par
ticipants’ affect rating changes between this interval did not differ 
significantly from 0 (Mean = − 5.2, Median = − 1, SD = 24.64, one- 
sample Wilcoxon V = 3127.5, p = .1) and were smaller compared to 
Experiment 3a (Mean = − 16.04, Median = − 14, SD = 27.36; Wilcoxon 
W = 9804, p < .001).

6.2.2. Exploratory analyses
We examined if participants’ actual performance or prediction error 

in the first round would better predict changes in their own affect rat
ings. Consistent with Experiment 3a, prediction error was a better pre
dictor of changes in affect and had a lower AIC score compared to actual 
performance in the first round (prediction error: b = 0.17, pFDR-corrected <

.001, AIC = 774.66; actual performance: b = − 0.16, pFDR-corrected = .001, 
AIC = 786.58; see full regression tables in SI; Fig. 4b and c).

6.3. Interim discussion

As in Experiment 3a, people’s actual and predicted learning trajec
tories were better fit by an exponential decay function compared to a 
linear function. Critically, we found that just three practice trials made 
people’s future performance predictions more accurate (although they 
were still inflated) and eliminated the sharp affect drop found at the 
beginning of learning without practice in Experiment 3a. Note that 
practice did not change participant’s predictions of their future learning 
rate. In sum, brief practice improves the accuracy of people’s predictions 
of their future performance which in turn may help participants remain 
positive at the beginning of skill acquisition.

7. General discussion

We found that people accurately predict the exponential decay shape 
of future skill learning curves on a novel visuomotor task prior to any 
task experience both for themselves and imagined naïve players. Criti
cally, people do not always predict that learning curves will follow an 
exponential decay function in a bounded time frame; rather, people only 
predict that learning unfolds exponentially when a player puts in effort 
and the task is not too difficult. Although people correctly predict the 
shape of skill learning curves, they misrepresent the specific parameters, 
both for others and themselves — they are overly optimistic about future 
performance but underestimate learning rates. Our results suggest that 
these inaccuracies may be consequential for learning by fueling negative 
feelings at the beginning of skill acquisition, when predicted perfor
mance exceeds actual performance. Importantly, we found that practice 
can ameliorate this effect: After just three practice trials, people’s per
formance predictions become more accurate and in turn, they feel better 
at the beginning of learning.

In contrast to prior work showing that people tend to linearize 
exponential functions (the Exponential Growth Bias, Wagenaar & 
Sagaria, 1975; McKenzie & Liersch, 2011; Stango & Zinman, 2009), our 
work revealed that people correctly intuit the exponential decay shape 
of learning curves. Participants predicted initial rapid improvement 
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followed by a longer period of slower improvement, both when 
providing explicit trial-by-trial point estimates and more abstract like
lihood estimates of future learning curves. The discrepancy between our 
findings and prior work on exponential thinking may be due to how we 
asked people to make predictions. For instance, in the classic duckweed 
and pond paradigm, Wagenaar and Timmers (1978) asked participants 
to indicate “the proportion of elapsed time” in comparison to when the 
pond will be fully filled. This task question is very cognitively 
demanding, requiring participants to reason and connect abstract 
properties like time and growth. In our paradigm, participants were 
asked to do something more intuitive — they directly simulated a series 
of performance data at specific moments in time. This is one key benefit 
of using a motor paradigm that has overt, explicit, and tangible trial-by- 
trial performance metrics, rather than a more abstract, cognitive para
digm (e.g., word list memory tasks). In contrast to prior work, we also 
asked participants to make predictions on relatively shorter time scales 
(e.g., performance over 50 trials vs. retirement savings over 40 years; 
McKenzie & Liersch, 2011), which recent work has shown makes 
exponential reasoning more accurate (e.g., how much will COVID-19 
cases increase in 3 days vs. 15 days; Lammers, Crusius, & Gast, 2020). 
We also minimized linguistic cue-based reasoning, which can distort 
predictions of learning curves (Ariel et al., 2014).

Our work suggests that people do not simply apply a “learning is 
exponential” heuristic when thinking about the shape of future learning 
curves, but rather adjust their estimates based on their beliefs about how 
task difficulty and players’ effort relate to performance gains. In line 
with prior theoretical and empirical work (Heller et al., 2015; Hodges & 
Lohse, 2020), people only predict that learning curves will follow an 
exponential decay function in a bounded time frame when the task is at 
an appropriate difficulty level and the learner puts in some effort. As 
such, people may be incorporating a priori beliefs about learning with 
observed features of the task, and the observed or imagined motivational 
state of the player, when making performance predictions. This 
approach is in line with “theory-based judgments” from the JOL litera
ture whereby people use their general knowledge about learning to 
predict future performance (Nisbett & Wilson, 1977; Koriat et al., 2004; 
Rhodes, 2016; Mueller & Dunlosky, 2017). Of course, it is likely that 
cues beyond effort and difficulty, like a player’s competence or external 
rewards (Howard, Bureau, Guay, Chong, & Ryan, 2021; Schneider, 
1998), inform people’s predictions. Future work is needed to explore 
how adults integrate multiple cues related to performance, both explicit 
and implicit, to construct learning curves.

Although people’s predictions of their own skill learning curves in 
our task match the shape of their actual skill learning curves, they sys
tematically misrepresent the precise parameters of their own and other 
people’s learning curves. Specifically, individuals think they and others 
will start and end better than they actually do in our task and, in turn, 
that they and others will improve at a slower rate than in actuality. Many 
factors could lead to these discrepancies, including ones specific to our 
task. Adults’ general optimism may inflate performance predictions, as 
prior work shows that adults can be overly positive about their future 
self on questionnaires as well as on tasks that probe beliefs and perfor
mance (Garrett & Sharot, 2017; Lefebvre et al, 2017; Sharot, Korn, & 
Dolan, 2011). Other biases, such as the “planning fallacy”, might cause 
people to underestimate the time or effort needed to reach specific 
performance goals (Kahneman & Tversky, 1977). Players may have also 
misperceived the task difficulty (e.g., how hard it would be to learn how 
long to optimally hold the “enter” key to toss the lollipop), or their own 
skill, given that they never played the game before. Indeed, three 
practice trials prior to making performance predictions reduced pre
diction errors, in line with prior research showing that practice improves 
forecasting (Finn & Metcalfe, 2007; Finn & Metcalfe, 2008; Horn & 
Loewenstein, 2024; Koriat et al., 2002; Koriat & Bjork, 2005; Kornell & 
Metcalfe, 2006). Although practice makes people’s performance pre
dictions more accurate, these predictions are still inflated. Thus, peo
ple’s systematic overestimation of performance and underestimation of 

learning rates across experiments are not simply a by-product of poorly 
calibrated beliefs about task difficulty or one’s skill. Precisely how much 
experience is needed for accurate learning curve predictions is an area 
for future research.

Misperceptions of specific features of one’s own learning curve may 
have significant consequences for actual learning outcomes. Initial 
optimism may be helpful by inspiring people to try new tasks. However, 
this initial optimism may be problematic once people embark on skill 
learning: We found that the more optimistic people were about their 
future learning progress, the more their mood dropped after the first 
round. This finding is in line with prior work showing that slowly 
improving on a task that you expect to quickly master can lead to 
quitting (see Dai et al., 2018; Lee & Wishart, 2005). Our task did not 
allow our participants to quit. If it did, their sudden drop in mood after 
the first five trials may have resulted in premature quitting, as their 
performance and their mood ultimately did improve. Across trials, 
participant mood and motivation were better fit by actual performance, 
rather than prediction errors between actual and predicted performance, 
potentially because people forgot their predictions over time or because 
their actual performance was more salient. Thus, it may be that pre
dicted learning curves are most impactful at the very beginning of 
learning, when people are adjusting how to allocate their effort. 
Importantly, it is reasonable to assume that the very beginning of 
learning is actually the most critical period — this is likely when people 
make thin-slice judgments about their competency on a task, and 
perhaps decide to quit. Our work shows that low-stakes practice may 
serve as an effective intervention since it reduces people’s prediction 
errors and negative affect changes at the beginning of learning.

Although we showed that adults can intuit learning curves prior to 
task engagement, it is unclear whether people spontaneously mentally 
construct future learning curves in their daily life without prompting. 
Going back to our opening example about learning a musical instru
ment, do people naturally think about their learning curves before 
starting a task or while engaging in one? Past work on cognitive moni
toring has shown that people do spontaneously monitor task demands 
and their own performance and opt to engage in easier tasks (Kool & 
Botvinick, 2018; Niebaum, Chevalier, Guild, & Munakata, 2019; Shen
hav et al., 2017). Moreover, learners adaptively choose to study items of 
desirable difficulty and choose to take on more difficult tasks only when 
they anticipate swift improvement (Bjork & Bjork, 2020; Moskowitz 
et al., 2020). Our work suggests that people may think about their ex
pected progress before starting a new task and choose tasks according to 
what they think is tractable. At the same time, mentally simulating 
entire learning curves for new tasks may itself be cognitively 
demanding. Thus, learners might not engage in elaborated learning 
curve prediction spontaneously; it is possible that learners might only 
predict the immediate performance gain (such as “I will play through the 
first five chords without errors next time”), hold a more general repre
sentation of progress (“I will get better with practice”), or only represent 
the end goal (“I will master playing this song”). Considering that making 
predictions about future outcomes may both improve learning (Brod, 
Hasselhorn, & Bunge, 2018) and goal-setting, future work should 
explore how learners with different experience levels may intuit their 
future progress in more naturalistic settings, as well as if prompting 
learners to think about their learning progress in a more fine-grained 
manner improves learning outcomes.

Our findings also speak to motivational and pedagogical theories. 
First, by showing that people expect that practice will lead to swift 
improvements in ability when someone puts in effort and the task is not 
too hard, our work highlights the circumstances under which people 
might possess a “growth mindset” (Dweck, 2006; Jia, Lim, Ismail, & Tan, 
2021; Walton & Yeager, 2020; Yeager et al., 2019). Furthermore, by 
assessing predictions of performance on a trial-by-trial basis, we 
revealed with significant granularity people’s perceptions about the 
relationship between practice and ability in the context of skill learning. 
Moving forward, our approach could be used to gain a better 
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understanding of people’s task-specific mindsets — if they have a fixed 
mindset about learning to sing, would they predict a flatter learning 
curve? Second, our research also points to where teaching and learning 
can go awry. Teachers constantly think about which tasks are most 
appropriate for learners, where students should be along their learning 
curve, and how to provide better support for learning (Bridgers, Jara- 
Ettinger, & Gweon, 2020; Gweon, 2021; Popp & Gureckis, 2020; 
Shafto, Goodman, & Griffiths, 2014). Our work suggests that if teachers 
misestimate a student’s effort or a task’s difficulty, they risk mis
calibrating their estimate of the learner’s true learning curve, and in 
turn, provide sub-optimal pedagogy. Furthermore, we show that 
learners themselves miscalibrate their starting point and rate of 
learning, both of which may necessitate intervention from a teacher to 
better scaffold expectations.

The question of how people think about learning curves may argu
ably be most important to study in children, who are rapidly acquiring 
foundational knowledge. Recent work shows that even 4- to 8-year-old 
children predict gradual improvement in the first few trials on a novel 
skill learning task (Zhang et al., n.d.). However, it remains unknown 
when in development children hold adult-like intuitions about the shape 
of learning curves on a longer timescale (e.g., that performance quickly 
improves early on and then slows down in skill learning; the exponential 
decay shape). Given that children are even more optimistic about their 
future performance than adults (Schneider, 1998; Lockhart, Goddu, & 
Keil, 2021; Leonard & Sommerville, 2025; Xia, Poorthuis, & Thomaes, 
2024), children may over-predict their starting and average perfor
mance and under-predict their learning rates more than adults. Criti
cally, our work suggests that children’s over optimism could have 
negative consequences: Since large prediction errors at the beginning of 
learning relate to negative affect, children may be even more likely than 
adults to feel bad and quit at the beginning of learning. Future work is 
necessary to explore (1) when children have the cognitive capacity to 
predict their future learning curves and (2) how these predictions relate 
to motivation and learning.

Our study has a number of limitations. First, we only tested pre
dictions of learning curves on one novel visuomotor task. It is unknown 
whether people predict that learning curves will unfold following an 
exponential decay function on other motor tasks, or on more abstract, 
cognitive tasks. Answering this question for more opaque cognitive tasks 
may be challenging as work on learning trajectories in the cognitive 
domain has been relatively sparse and more heterogeneous (Tulving, 
1967; Rice, Wexler, & Hershberger, 1998; Son & Sethi, 2010; Howard, 
2018). Thus, further research is needed to examine whether people can 
predict the varied shapes of learning curves across domains and on 
different time scales. Second, our task imposed a bounded time scale of 
50 trials for the learning curve predictions, which only captured the 
beginning process of learning on this task. It is an open question, for 
example, whether people might predict exponential decay shapes of 
learning trajectories for a player who puts in effort on a difficult task in 
Experiment 2 over a longer time scale. Third, although we explored 
people’s representations of learning curves, we never explicitly labeled 
them as such. It is unclear how people explicitly think about “learning 
curves” per se. Fourth, our use of a within-subjects design in Experiment 
2, allowed us to reduce participant-level variability and increase power, 
but this design may have also inadvertently increased the likelihood that 
participants suspected what the goal of the experiment was. Thus, future 
work should run a between-subjects version of Experiment 2 to fully rule 
out demand effects. This work would be further bolstered by having 
participants actually play the Lolli-toss tasks with varying difficulty and 
varying effort to confirm that actual learning curves differ by these 
conditions. Finally, we recruited participants from a convenience sam
ple in a Western, educated, industrialized, rich, and democratic 
(WEIRD) country, so we cannot address whether our findings generalize 
across socio-cultural contexts.

We talk and think a lot about learning curves. Coaches and educators 
give advice about learning curves (tennis coach Brad Gilbert has said: 

“There’s always a learning curve, where you’ve got to learn what your 
subject is all about”; Drucker, 2007), pop-psychology books are written 
about them (e.g., the so-called “ten thousand hour rule” in Outliers by 
Malcom Gladwell, 2008), and they are even mentioned in children’s 
literature (“But I do think that when people say ‘a learning curve,’ they 
make a mistake. Learning to me always seems to go in a straight, 
ignorant line and then, every so often, takes a jump straight upward.” 
Jones, 2011). Yet, it is not always clear what people mean when they 
talk about learning curves or whether they have an accurate sense of 
them. Here we show that, on a novel skill learning task, people accu
rately predict that learning curves typically start off swiftly and then 
level off — a prediction made before they even engaged with the task. 
This apparent intuitive understanding of learning curves may have a 
direct relationship to how people make crucial decisions about what 
tasks to pursue in the first place, and when to persist versus quit. A better 
understanding of people’s mental representations of learning curves 
thus has wide implications for studies of development, pedagogy, and 
real-life decision-making.
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